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Gases perturbed by thermal gradients exert forces on surfaces exposed to the molecular bombardment. We
calculate the force on thin plates with temperature differences between the opposite faces in dense gases. Using
the Chapman-Enskog method we obtain an analytical formula that accounts for normal and shear stresses on
the plate edge. We predict a force per unit length of the plate perimeter up to 6.6�10−8 N/mm per degree
Kelvin of temperature difference in air. The present result is compared with experimental data from the
literature finding an excellent agreement in those cases where experimental conditions and procedures permit
comparison. The proposed analytical formula provides an effective tool for calculating forces in microstruc-
tures and nanostructures affected by temperature inequalities.
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I. INTRODUCTION

An interesting class of gas kinetic phenomena occurs in
gases with thermal gradients. Notable examples are thermal
creeping along unequally heated walls �1,2�, thermal transpi-
ration across porous membranes �3,4�, and steady state pres-
sure gradients along tubes in Knudsen-type pumps �5,6�.
Thermal gradients also give rise to macroscopic forces at the
gas-surface interface such as thermophoretic �7,8� and radio-
metric forces �9–11�. These play a role in the dynamics of
particles and aerosols in the earth atmosphere and are of
increasing concern in microelectromechanical systems
�MEMS� �12–14� where temperature inequalities on the mi-
croscale may give rise to unwanted stresses. The forces are
governed by the Knudsen number Kn which is the ratio of
the molecular mean free path � to a characteristic length
scale � of the object immersed in the gas. Typically the
forces increase as the gas pressure is decreased, they reach a
maximum for a certain Kn range, and then decrease for van-
ishing gas densities. For this reason thermal forces are tradi-
tionally associated to rarefied gas science. However, ad-
vances in microengineering and nanoengineering allow to
achieve large Knudsen numbers and thus larger forces at
higher pressures due to the characteristically smaller dimen-
sions of microstructures and nanostructures.

This paper investigates forces exerted by dense gases on
thin plates whose opposite faces are kept at different tem-
peratures. Dense gases are characterized by the dominance of
intermolecular collisions over molecule-surface collisions.
Within this regime we focus here on plates whose side a is
larger than the mean free path �, but whose thickness � is
comparable to �. These objects, as a sort of link between the

microscopic and the macroscopic domains, are common in
semiconductor science and in microdevices and nanodevices
which are built around thin films deposited through chemical
or physical vapor deposition. Thin plates are used as micro-
cantilevers in atomic force microscopy �15,16� and in high-
precision Casimir force measurements �17�. These devices
are frequently heated on one side by a laser for measuring
the cantilever displacement; the laser generates a thermal
gradient across the plate and in the surrounding gas, and the
associated thermal forces can affect the measurements. In
other cases the thermal forces are exploited for powering
MEMS actuators �12,14�. The rapidly growing discipline of
thin-film thermoelectrics �18,19� offers the opportunity to
test thermal forces in Peltier microcoolers and nanocoolers.
These devices can generate temperature differences as high
as 15 K across a 700 nm thick plate at atmospheric pressure
�20� corresponding to thermal gradients in the 107 K/m
range. These are among the largest gradients ever observed
in nature or in a laboratory and are expected to generate
significant gas kinetic forces when the Peltier devices are
detached from the substrate.

The present investigation also seeks basic understanding
of momentum transport phenomena at high gas densities. It
is known that for a�� �free-molecular regime� thermal
forces are proportional to the plate area �21�; however for
a�� the contribution from the edges is predominant �22�.
Dependence of the force on the plate perimeter is consistent
with experiments performed in Refs. �23,24� and with recent
measurements by Passian et al. �13� who tested plates with
etched microholes. A plate with a hot and a cool surface
experiences normal and shear stresses due to molecules im-
pinging on the edge. This is depicted in Fig. 1. Shear forces
were first investigated in Refs. �1,3� and lead to gas stream-
ing along surfaces parallel to the thermal gradient. The
stresses associated with the streaming have been studied us-
ing a hydrodynamic approach in Refs. �25,26�. Normal
forces are due to a local excess pressure present on the area
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of a strip a mean free path wide along the perimeter, as
elucidated by Einstein in Ref. �27�. In his contribution to the
study of radiometric forces, Einstein derived a formula for
the force acting on an infinitely thin plate in a dense gas with
a temperature gradient. Einstein finds a normal force propor-
tional to the plate perimeter; however his work is a qualita-
tive treatment which does not compute the exact constant
factors; as such the agreement with the observations is mod-
est �24�. In this paper we present a more comprehensive and
rigorous calculation of the thermal forces acting on the edges
of flat plates immersed in dense gases. We calculate both the
shear and the normal contributions using the Chapman-
Enskog distribution of velocities. While today’s numerical
methods allow to find exact solutions to the Boltzman equa-
tion, those methods frequently involve lengthy computations
and in some cases require computers with dedicated soft-
ware. The approach proposed here offers an approximated,
yet rapid and analytical solution. As the results given below
show, our approach provides—in the example given—a suf-
ficently adequate platform for calculating thermal forces.

II. THE MODEL

Consider a plate with two facial surfaces S1 and S2 and
an edge surface s as shown in Fig. 1. The plate has a side
length a, a perimeter �, and a thickness ��a. The plate is
immersed in a gas consisting of molecules of mass m with
number density n. The present model ignores all degrees of
freedom other than translatory motion. The gas and the plate
are located in a space with orthogonal coordinates x ,y ,z and
the plate is oriented parallel to the x-z plane. The surfaces S1
and S2 are kept at different temperatures T1 and T2, respec-
tively, with T1�T2 and 	T=T1−T2. We will divide the gas
in three regions as shown in Fig. 1. Region I is the unper-
turbed gas far away from the plate. In this region the tem-
perature is T0 and a Maxwellian distribution of velocities
holds. Region III defines the column of gas above S1 and
below S2. In this region a mild temperature gradient is
present; for instance above S1 the temperature falls from T1
to T0 on a length scale a along the y axis. Since a is large,

this gradient will be ignored. In region II a strong tempera-
ture gradient given by dT /dy=	T /� is present, this is the
relevant gradient in the problem. Any temperature gradients
along the x-z plane are neglected. Region II stretches for
several mean free paths from the plate edge. In all three
regions I, II, III, the pressure is assumed to be a constant,
therefore the product nT is an invariant �28�, furthermore we
assume the gas to be in a steady state. In the presence of
temperature gradients the gas is governed by a non-
Maxwellian velocity distribution given by f = f0+ f1, where f0
denotes the Maxwell-Boltzmann distribution function and f1
is the Chapman-Enskog term �29� which is linear in the gra-
dient dT /dy. Following Ref. �30�, the complete distribution
function of velocities reads

f�v�� = �


�
�3/2

e−
�vx
2+vy

2+vz
2��1 + Avy�5

2
− 
�vx

2 + vy
2 + vz

2��� ,

�1�

where


 =
m

2kT
,

and the gradient term A is obtained by solving the scattering
problem for molecules with cross section ��2,

A =
15

32n��2T
	�m

kT

dT

dy
,

where k is the Boltzmann constant. Details of the derivation
of �1� can be found in either Ref. �29� or Ref. �30�. The
Chapman-Enskog approximation �1� is valid for small to
moderate temperature gradients. For large gradients higher
orders in the expansion are required. Furthermore Eq. �1� is
inadequate for very large Knudsen numbers where intermo-
lecular collisions become irrelevant �see discussion below�.

III. CALCULATION OF THE NORMAL FORCE

The molecules from region II that impinge obliquely on
S1 �solid arrows in Fig. 1� impart a larger momentum in the
y direction than molecules impinging on S2 as the former
ones have a higher mean velocity. Thus a minute portion of
S1 near the plate border suffers a higher pressure through
molecular bombardment. The momentum p1 per unit area
imparted to S1 by molecules impinging with negative vx and
negative vy is given by

p1 = nm

−

0

dvx

−



dvz

−

0

dvyvy
2f�v�� =

nkT

4
+

15k

64	2��2

	T

�
.

�2�

The right-hand side of Eq. �2� shows a Maxwellian term and
a gradient term. The momentum imparted by molecules im-
pinging on S2 is

FIG. 1. A large plate with one edge immersed in a gas. The two
opposite faces have different temperatures, generating a thermal
gradient in region II. The solid arrows represent molecules contrib-
uting to the normal force. The dashed arrows contribute to the shear
force.
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p2 = nm
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In order for Eq. �3� to be physical its right-hand side must be
positive,

nkT

4
�

15k

64	2��2

	T

�
, �4�

this imposes an upper limit on the magnitude of the gradient,

15

16
�

dT

dy
� T �5�

and on the Knudsen number

15

16
Kn �

T

	T
. �6�

When either the gradient or the Knudsen number exceed the
above limits the Chapman-Enskog approximation proposed
in this paper is not applicable. The difference between �2�
and �3� gives the net normal momentum per unit area. The
resulting normal force is

	fnorm = �p1 − p2����� =
15k

32	2��2

	T

�
�� .

Here the Maxwellian terms have cancelled leaving the sum
of the gradient terms. This is consistent with a force vanish-
ing for homogeneous temperature distributions. In deriving
	fnorm it is assumed, following Ref. �27�, that the area in-
volved in the molecular bombardment is a strip a mean free
path wide along the plate perimeter �. This assumption re-
quires that the mean free path is smaller than the side of the
plate,

0 � � � a ,

which imposes a further constraint on the Knudsen number.
We now calculate the contribution from the molecules re-
flected off the plate. Molecules that thermalize with the sur-
faces S1 and S2 will have a Maxwellian distribution of ve-
locities. Thus the net recoil momentum from thermalized
molecules is of the form

kn1 T1 − kn2 T2,

where n1 and n2 refer to the gas densities in the layers im-
mediately above the hot and cold surfaces, respectively. Be-
cause the product n�y�T�y� is constant throughout the gas,
this difference vanishes. Thus the contribution from accom-
modated molecules is zero. Conversely molecules that un-
dergo an elastic reflection maintain their initial energy and
velocity distribution. Their contribution to the force equals in
sign and modulus that of the impinging molecules �31�.
Based on this, the complete normal force can be approxi-
mated by

	fnorm
� = �2 − ��

15

32	2�

k

�2

	T

�
���� , �7�

where � is the energy accommodation coefficient of the plate
assumed to be the same on both S1 and S2. Equation �7� is
valid for ���. For plates with thickness ��� the thermal
gradient in region II becomes

�dT/dy�� = 	T/�

which is the maximum �32� effective gradient for a given
	T. Accordingly the normal force on thin plates reads

Fnorm = �2 − ��
15

32	2�

k

�2	T� . �8�

Equation �8� is independent of the gas density as long as �
��.

IV. CALCULATION OF THE SHEAR FORCE

In addition to the normal force the plate suffers a shear
stress due to molecules impinging on the surface s �dashed
arrows in Fig. 1�. Again, the molecules coming from the hot
side carry a higher momentum in the y direction than mol-
ecules coming from the cold side. Accordingly the area s
undergoes a net shear pressure directed toward the cold side
given by

	pshear = nm

−

0

dvx

−



dvz

−



dvyvyvxf�v�� =
15

64	2�

k

�2

	T

�
.

�9�

Furthermore, using Eq. �1� we find that the contribution from
molecules leaving the surface s is zero in the case of com-
pletely accommodated molecules. For molecules undergoing
a specular reflection the contribution is equal and opposite in
sign to �9�. Thus specular reflections reduce the shear effect.
The total accommodated shear pressure reads

	pshear
� =

15

64	2�

k

�2

	T

�
� .

The shear force for ��� is

Fshear =
15

64	2�

k

�2�
	T

�
���� . �10�

V. COMPLETE GAS-KINETIC FORCE AND
COMPARISON WITH EXPERIMENTS

The complete gas-kinetic force acting on the plate edge is
given by the sum of the normal �8� and shear �10� contribu-
tions,

F = �	T��2 + ��1

2

1

Kn
− 1�� , �11�

where
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� =
15

32	2�

k

�2 , Kn =
�

�
.

Formula �11� is the main result of the present paper. Accord-
ing to �11� the gas-kinetic force on a thin plate is linearly
dependent on the perimeter length and on the temperature
difference 	T. Because of the limits on the temperature gra-
dient and on the Knudsen number mentioned above, Eq. �11�
is only valid for

1 � Kn �
a

�
, 1 � Kn �

16

15

T

	T
. �12�

Equation �11� has a maximum for �=� and �=0. If the am-
bient gas is air at 15 °C, and the gas molecules are modeled
as hard spheres of diameter �=0.372 nm, as proposed in
Ref. �29�, we find that the maximum force per unit length of
plate perimeter is 6.6�10−8 N/mm per degree Kelvin of
temperature difference. The dependence on � is weak, the
force varying by less than 25% in the 0���1 interval. To
check the validity of our result we have compared Eq. �11�
against experimental data from the literature. In Ref. �24�
Marsh and collaborators measured the thermal force on sev-
eral thin mica plates having different perimeters but the same
facial area. The investigation was performed in air in a pres-
sure range for which the mean free path was smaller than the
dimensions of the vessel and of the plates. The mica plates
had one face blackened with soot and this face was heated by
means of a focused light beam. The temperatures on the
opposing faces were monitored with thermocouples and the
gas-kinetic force was measured with a torsion pendulum.
Forces on plates with larger perimeter were found to be
larger. The force measured on plates with thickness �
=450 �m, at 0.03±0.001 Torr pressure ��=1.62 mm� and at
	T=0.49±0.05 °C, was found to be 0.02 dyne per each cm
of plate perimeter. The accommodation coefficients are not
given in Ref. �24�. However for unpolished mica and carbon
soot, values between 0.7 and 1 are plausible. References �33�
and �34� provide values of �=0.80 for mica and �=0.909 for
soot, respectively. We take the mean of these values and
insert �=0.85±0.05 in formula �11�. The resulting calculated
force is shown in Table I along with the value predicted by
Ref. �27�. The uncertainty in the calculated force is

±0.004 dyne/cm. The mismatch between Eq. �11� and the
observation is smaller than the uncertainty.

VI. CONCLUSIONS

In summary we have found an analytical formula for cal-
culating gas-kinetic forces on thin, unequally heated plates.
This is given by Eq. �11� which expresses the force in terms
of the perimeter length �. We have found good agreement
between Eq. �11� and observations, although further testing
will be needed to confirm this finding. A comparison with
more recent observations in the transitional Knudsen regime
such as those performed by Lereu et al. �35� could shed more
light. The authors intend to perform the comparison in a
future paper. Our investigation strengthens the picture of
thermal forces occurring at the plate edge in the regime con-
sidered. As long as the plate is thin, the mass motion of the
gas can be neglected and the force can be successfully com-
puted using the gas-kinetic approach proposed here. Equa-
tion �11� has been derived for a square plate, however it is
expected to hold for plates of different shapes as long as
���. Of particular interest are plates with enhanced perim-
eters through etched holes and slits �13�, and possibly micro-
diffraction gratings. Future work should be directed toward
investigating gases with additional degrees of freedom be-
sides transitory motion. Finally it would be interesting to
implement a more rigorous model for the accommodation
coefficients and consider facial surfaces S1 and S2 made of
two different materials as this is frequently the case in ex-
perimental situations.
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